
Software developers have spent the past two years watching AI coding tools evolve from advanced autocomplete into something that can, in some cases, build entire applications from a text prompt. Tools like Anthropic’s Claude Code and OpenAI’s Codex can now work on software projects for hours at a time, writing code, running tests, and, with human supervision, fixing bugs. OpenAI says it now uses Codex to build Codex itself, and the company recently published technical details about how the tool works under the hood. It has caused many to wonder: Is this just more AI industry hype, or are things actually different this time?
To find out, Ars reached out to several professional developers on Bluesky to ask how they feel about these tools in practice, and the responses revealed a workforce that largely agrees the technology works, but remains divided on whether that’s entirely good news. It’s a small sample size that was self-selected by those who wanted to participate, but their views are still instructive as working professionals in the space.
David Hagerty, a developer who works on point-of-sale systems, told Ars Technica up front that he is skeptical of the marketing. “All of the AI companies are hyping up the capabilities so much,” he said. “Don’t get me wrong—LLMs are revolutionary and will have an immense impact, but don’t expect them to ever write the next great American novel or anything. It’s not how they work.”
Roland Dreier, a software engineer who has contributed extensively to the Linux kernel in the past, told Ars Technica that he acknowledges the presence of hype but has watched the progression of the AI space closely. “It sounds like implausible hype, but state-of-the-art agents are just staggeringly good right now,” he said. Dreier described a “step-change” in the past six months, particularly after Anthropic released Claude Opus 4.5. Where he once used AI for autocomplete and asking the occasional question, he now expects to tell an agent “this test is failing, debug it and fix it for me” and have it work. He estimated a 10x speed improvement for complex tasks like building a Rust backend service with Terraform deployment configuration and a Svelte frontend.
Source link













